imbalanced data1 불균형 클래스 분류(Imbalanced Classification)를 위한 4가지 방법 머신러닝으로 불균형 데이터를 분류하는 대부분의 예시는 이항 클래스 분류에 초점을 맞추고 있다. 그래서 이번엔 다중 클래스 불균형 데이터(Multi-class imbalanced data)를 처리하는 포스팅을 기록해보고자 한다. 이번 포스팅에서 다뤄볼 분균형 데이터 처리 방법은 다음 네 가지이다. Under Sampling | 언더 샘플링 Simple Over Sampling | 단순 오버 샘플링 Algorithm Over Sampling | 알고리즘을 통한 오버샘플링(SMOTE, ADASYN) Cost-sensitive learning | 뭐라고 번역하지 시작해보자. 개발환경 Python 3.6.11 imblearn 0.7.0 Glass Multi Class Classification Dataset 이 .. 2020. 9. 4. 이전 1 다음