ML | DL | Big data/Projects5 kaggle 주택 가격 예측(5) - Stacking과 Blending으로 등수 올리기(상위 6%) 저번 글에는 몇몇 ensemble 모델을 조합해서 상위 13%에 랭크해보았다. 이번 글에서는 모델 stacking과 blending을 이용하여 상위 10% 이내에 랭크해보자. prediction with stacking models¶ 임포팅, 데이터 로딩 In [1]: # Imports import pandas as pd import numpy as np from sklearn.model_selection import cross_val_score, train_test_split, KFold from sklearn.preprocessing import StandardScaler, RobustScaler from sklearn.metrics import mean_squared_error, make_score.. 2020. 8. 24. kaggle 주택 가격 예측(4) - 모델 앙상블으로 등수 올리기(상위 13%) 저번 글에는 regression 4종으로 예측해보고, 결과가 가장나은 ElasticNet의 결과로 제출 해보았다. 이번글에는 조금더 핫하고 자주쓰이는 모델 중 LightGBM, XGBoost, GradientBoost 그리고 꼽사리로 RandomForest와 앙상블 기법으로 등수를 올려보자. prediction with ensemble algorithms¶ 임포팅, 데이터 로딩 In [1]: # Imports import pandas as pd import numpy as np from sklearn.model_selection import cross_val_score, train_test_split, KFold from sklearn.preprocessing import StandardScaler, R.. 2020. 8. 21. kaggle 주택 가격 예측(3) - 간단한 regression으로 예측하기(상위 30%) 저번 글에는 데이터를 전처리하고 저장했었다면 이번 글에서는 전처리 데이터로 학습하고 kaggle에 제출해 볼 예정이다. 복잡한 알고리즘 이전에 간단한 머신러닝으로 돌린 성능을 확인하기 위해, 이번 글에서는 우선 Linear regression, ridge regression, rasso regression, elasticnet 네 가지로 실습을 해보자. 그나저나 노트북을 그대로 옮겨오면 사이즈 때문에 별로 예쁘지도 않고, 작성 후 재수정시, html구조가 깨져 노트북 테마가 다 사라져 버린다. 다른 방법을 강구해봐야겠다. 4 kinds of regression¶ In [1]: # Imports import pandas as pd import numpy as np from sklearn.model_sele.. 2020. 8. 20. kaggle 주택 가격 예측(2) - Data preprocess / Feature engineering 저번 글에는 데이터를 탐구하기만 했다면, 이번 글에는 탐구했던 내용들을 바탕으로 데이터를 전처리하고 추가적인 feature들을 생성해보자. 이번 글을 다 읽고 나면 머신러닝에서 Feature들이 어떻게 뻥튀기되고, 버려지기도 하며, 역 추산되는지 알게 될 것이다. House Prices: Advanced Regression Techniques Predict sales prices and practice feature engineering, RFs, and gradient boosting www.kaggle.com kaggle 주택 가격 예측(1) - 포괄적인 데이터 탐색 분석 / EDA xgboost를 활용한 실전 실습을 무엇으로 해볼까 kaggle을 구경하다가 많은 사람들의 튜토리얼 compete으로 .. 2020. 8. 17. kaggle 주택 가격 예측(1) - 포괄적인 데이터 탐색 분석 / EDA xgboost를 활용한 실전 실습을 무엇으로 해볼까 kaggle을 구경하다가 많은 사람들의 튜토리얼 compete으로 이용되고 있는 주택 가격 예측으로 진행하기로 결정했다. House Prices: Advanced Regression Techniques Predict sales prices and practice feature engineering, RFs, and gradient boosting www.kaggle.com 우선 머신러닝이나 딥러닝을 시작하기 전에는 학습과 예측할 데이터 분석부터 시작해야 한다. 처음부터 모든 데이터 분석을 내가 하면 좋겠지만, 정석으로 불려도 좋을 만큼 좋은 예시가 kaggle에 있기에 몇몇 노트북을 따라 하는 것으로 대체한다. 이번 글에서는 번역한 수준으로 해당 노트북.. 2020. 8. 10. 이전 1 다음