스태킹1 kaggle 주택 가격 예측(5) - Stacking과 Blending으로 등수 올리기(상위 6%) 저번 글에는 몇몇 ensemble 모델을 조합해서 상위 13%에 랭크해보았다. 이번 글에서는 모델 stacking과 blending을 이용하여 상위 10% 이내에 랭크해보자. prediction with stacking models¶ 임포팅, 데이터 로딩 In [1]: # Imports import pandas as pd import numpy as np from sklearn.model_selection import cross_val_score, train_test_split, KFold from sklearn.preprocessing import StandardScaler, RobustScaler from sklearn.metrics import mean_squared_error, make_score.. 2020. 8. 24. 이전 1 다음